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1 Find the set of values ofx satisfying the inequality 3|x − 1| < |2x + 1|. [4]

2 Solve the equation

5x−1 = 5x − 5,

giving your answer correct to 3 significant figures. [4]

3 Solve the equation

sin(θ + 45◦) = 2 cos(θ − 30◦),
giving all solutions in the interval 0◦ < θ < 180◦. [5]

4 When(1+ ax)−2, wherea is a positive constant, is expanded in ascending powers ofx, the coefficients
of x andx3 are equal.

(i) Find the exact value ofa. [4]

(ii) Whena has this value, obtain the expansion up to and including the term inx2, simplifying the
coefficients. [3]

5 (i) By differentiating
1

cosx
, show that ify = secx then

dy
dx

= secx tanx. [2]

(ii) Show that
1

secx − tanx
≡ secx + tanx. [1]

(iii) Deduce that
1

(secx − tanx)2
≡ 2 sec2x − 1+ 2 secx tanx. [2]

(iv) Hence show thatä
1
4

π

0

1

(secx − tanx)2
dx = 1

4(8√2− π). [3]

6 The variablesx andy are related by the differential equation

x
dy
dx

= 1− y2.

Whenx = 2, y = 0. Solve the differential equation, obtaining an expression for y in terms ofx. [8]

7 The equation of a curve is ln(xy) − y3 = 1.

(i) Show that
dy
dx

= y

x(3y3 − 1) . [4]

(ii) Find the coordinates of the point where the tangent to the curve is parallel to they-axis, giving
each coordinate correct to 3 significant figures. [4]
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The diagram shows the curvey = e−1
2
x2√(1+ 2x2) for x ≥ 0, and its maximum pointM.

(i) Find the exact value of thex-coordinate ofM. [4]

(ii) The sequence of values given by the iterative formula

xn+1 = √(ln(4+ 8x2
n)),

with initial value x1 = 2, converges to a certain valueα. State an equation satisfied byα and
hence show thatα is thex-coordinate of a point on the curve wherey = 0.5. [3]

(iii) Use the iterative formula to determineα correct to 2 decimal places. Give the result of each
iteration to 4 decimal places. [3]

9 The complex number 1+ (√2)i is denoted byu. The polynomialx4 + x2 + 2x + 6 is denoted by p(x).
(i) Showing your working, verify thatu is a root of the equation p(x) = 0, and write down a second

complex root of the equation. [4]

(ii) Find the other two roots of the equation p(x) = 0. [6]

10 With respect to the originO, the pointsA, B andC have position vectors given by

−−→
OA = ( 3−2

4
),

−−→
OB = ( 2−1

7
) and

−−→
OC = ( 1−5−3

).

The planem is parallel to
−−→
OC and containsA andB.

(i) Find the equation ofm, giving your answer in the formax + by + cß = d. [6]

(ii) Find the length of the perpendicular fromC to the line throughA andB. [5]
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